GREENER GAMING IN WORLD SPACE


CS 411W | Team Crystal | 17 April 2023

Table of Contents

- 3 Team Introduction
- 4 Problem Statement
- 5 Background
- 10 Current Process Flow
- 13 Solution Statement
- 14 Customers/End Users
- 15 Solution Characteristics
- 17 Solution Process Flow
- 19 Gamification
- 22 GUI Sitemap
- 23 Tech Stack

- 25 MFCD
- 26 Development Tools
- 27 Algorithm Flow
- 28 Database Schema
- 29 GUI Mockups
- 32 Competition
- 34 Risks
- 37 Conclusion
- 38 References
- 40 Appendix

Meet Our Team

Bittu Ahlawat Mentor

CS 411W | Team Crystal | 17 April 2023

Ashley Borum

Hawar Hawarry

Jeremiah Shelor

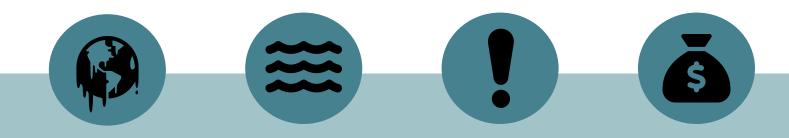
Bradley Sherwood

Zach Schumacher

Manuel Tan

3

Problem Statement


Motivation:

Climate change presents a range of risks to human life and the environment. Avoiding the worst effects of climate change will require urgent action to reduce reliance on energy generated from fossil fuels.

Problem:

The world is already experiencing significant disruptions due to global temperature rise, yet there exists a disconnect between high-performance personal computing trends and the realities of decarbonizing the electric grid.

Problem Background: The Big Picture

Climate Change

We have seen a 1.1° C rise in temperature since 1880 and projected a 3.2° C increase by the end of this century.

Natural Disasters

There has been a 4 inch rise in global sea levels since 1993. We are likely to see higher rates of flooding and wildfires.

Actions

The world is falling short of the emissions reductions needed to avoid the most severe impacts from global warming.

Financial Strain

The World Economic Forum ranked climate change as the biggest risk to the economy in 2020.

Sources: United Nations, NASA, Washington Post

CS 411W | Team Crystal | 17 April 2023

Problem Background: How does this affect us?

Food Shortages

With the continuous increase in temperature and change in weather, there would most likely have a decrease in harvest due to flooding.

Poverty

People are expected to live in poverty due to floods sweeping away homes, and livelihoods. The change in temperature would also affect the way people work.

Health Risks

Over 90% of people breathe unhealthy levels of air pollution, largely resulting from burning fossil fuels driving climate change. Heat strokes.

Animal Population

The world is currently suffering from coral bleaching where fish are losing their habitats and sources of food.

Sources: United Nations

CS 411W | Team Crystal | 17 April 2023

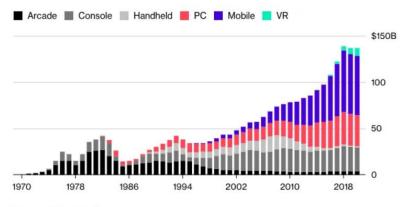
Problem Background: Gaming and the Climate

A typical gaming computer consumes an estimated 1,400 kWh/year and accounts for around 1,700 pounds of CO_2 annually. [1]

3 Refrigerators

1 Gaming PC

Gaming consumes 34 TWh/year in the U.S., emitting the same CO_2 as 85 million refrigerators, or more than 5 million cars. [2] Gaming PCs account for an outsized share of power consumption among personal devices [1].



Research suggests energy use could be significantly reduced without negatively affecting user experience. [2]

Sources: Lawrence Berkeley National Laboratory [1], Mills, et al. "Toward Greener Gaming..." [2] CS 411W | Team Crystal | 17 April 2023

A growing problem...

PC gaming's increased market share¹

Source: Pelham Smithers

GPU power demands keep rising.

High-end NVIDIA GPU power draw, recent generations:²

And rising?

AMD recently predicted GPU power consumption of 600-700W by 2025.³

[2] TechPowerUp.com

Nameplate Power (Watts)

Problem Background: PC Stats

Main Menu:

- To put into perspective how much power someone with a gaming PC might use while running a resource intensive game or program, here are some wattage statistics while playing a resource-intensive video game:
- CPU: AMD Ryzen 5 5600X
- GPU: NVIDIA GeForce RTX 3070 Ti

• Game: Escape from Tarkov

	Current	Min	Max	Avg	_	Current	Min	Max	Avg
🐬 CPU Package Power	37.282 W	35.136 W	45.800 W	40.294 W	👎 CPU Package Power	63.294 W	35.136 W	72.390 W	46.505 W
5 GPU Power	105.166 W	91.369 W	123.825 W	101.413 W	🖻 GPU Power	217.262 W	50.351 W	288.331 W	159.049 W

This also demonstrates how the power consumption of a PC can vary drastically depending on what software is currently in use and the actions of the user. The gameplay wattage is equivalent to:

- Two 65" LED TVs [2]
- Six fluorescent lamps [2]
- One fridge/freezer combination [2]
- Eight DVD players [2]

Our Solution

Eco-feedback software that leverages gamification to teach PC users about the carbon intensity of their computing habits and promote more sustainable behaviors.

Customers and End-Users

End-Users

- PC gamers
- Parents/guardians of PC gamers
- Content-creators (Video, 3D rendering, streaming)
- Any PC power user engaged in demanding workflows

Stakeholders

- Researchers
- Advocacy groups
- Educators
- Regulators
- Gaming companies with public commitments on the environment

Solution Characteristics

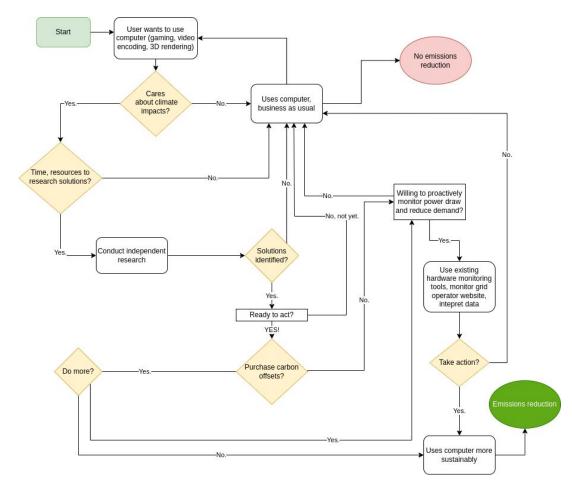
The software will:

- Continuously sample PC wattage
- Monitor hourly regional electricity generation by fuel type
- Produce a personalized estimate of a device's carbon-intensity
- Use gamification to challenge users to reduce CO₂ emissions
 - Achievable daily targets
 - Earnable rewards to incentivize progress
- Predict periods of high renewables availability
- Make recommendations on optimal time frames to carry out demanding tasks
- Estimate carbon-intensity of individual computing tasks

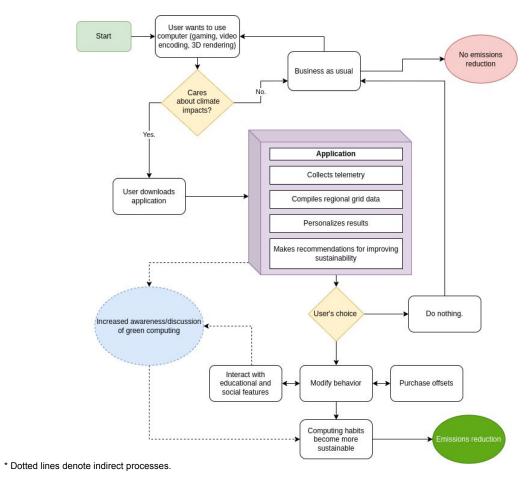
Solution Characteristics

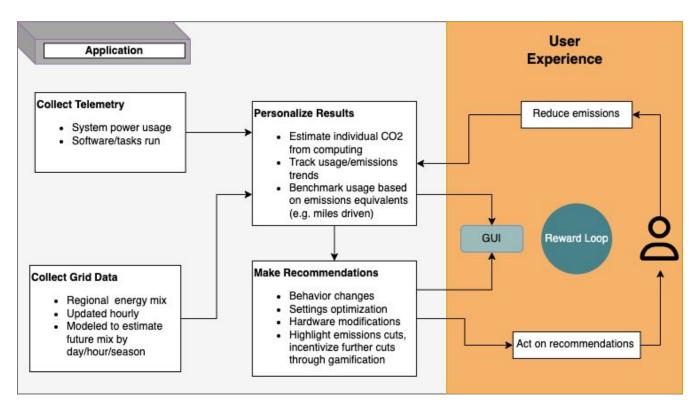
The software will (cont.):

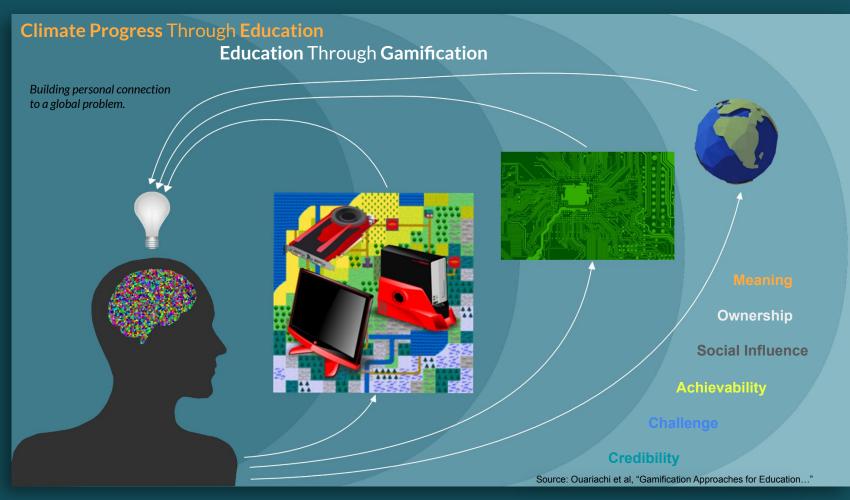
- Provide both climate- and cost-focused parental monitoring features through a companion application
- Collect anonymized data on hardware and usage:
 - Provide access to consumption and hardware statistics through a research API
 - Data used to help drive research and policymaking around climate impacts of personal computing (e.g. California efficiency standards for PCs)
 - Push for greater efficiency in gaming hardware through data transparency


Solution Characteristics

The software will NOT:


- Focus on reducing general household energy costs or make energy efficiency recommendations concerning non-computing devices
- Require a dedicated smart device to monitor electricity usage, such as a smart plug


Current Process Flow



Solution Process Flow

Solution Process Flow: Application Breakout

CS 4101W | Team Crystal | 17 April 2023

Gamification: Proof of Concept

Goal: Foster emotional investment in real-world outcomes through simulation and personalization

A personalized 'virtual ecosystem'

Behavioral change rewards virtual currency used to:

- Unlock new plants, animals, insects by purchasing in a virtual storefront
- 'Terraform' the ecosystem, creating new habitat for unlocked species
- Invest in maintaining, cleaning ecosystem
- Invest in recovery, remediation
- Users can share or visit one another's ecosystems

Personal ecosystem has its own greenhouse gas parts-per-million (GHG PPM) stat linked to user behavior:

- Periods of high-CO₂ emissions intensity raise GHG PPM
- High GHG PPM destabilizes ecosystem, potential for unlocked species to 'die out' via permadeath system comparable to virtual pet games
- Nudges to reduce CO₂ intensity coupled with specific warnings for personal ecosystem

Gamification: Proof of Concept

Goal: Promote behavioral change through time-bound progression system

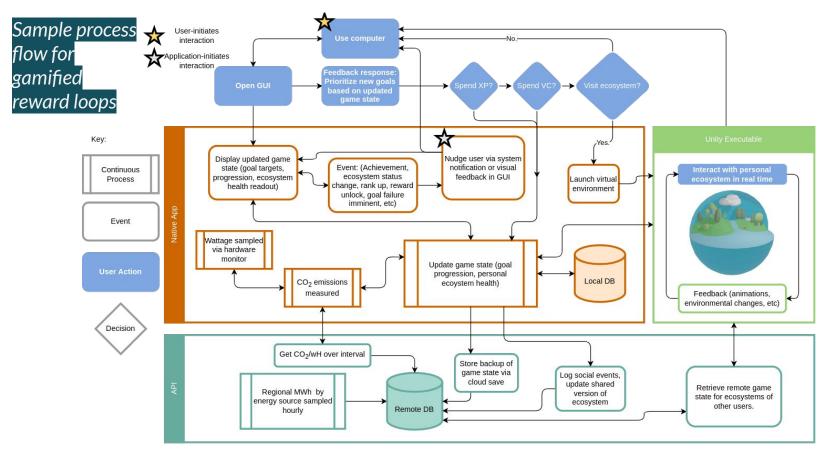
Achievement/bounty system:

- Tracked by rarity ("only X% of players have this achievement")
- Reward XP, virtual currency, badges
- Reward completion streaks for daily goals
 - 3-day, 5-day, 7-day, 14-day, 30-day
- Possible daily achievements:

Call of Duty Cycle Expend 30% of total watt-hours over a 24-hour period during peak availability of non-CO₂ electricity.

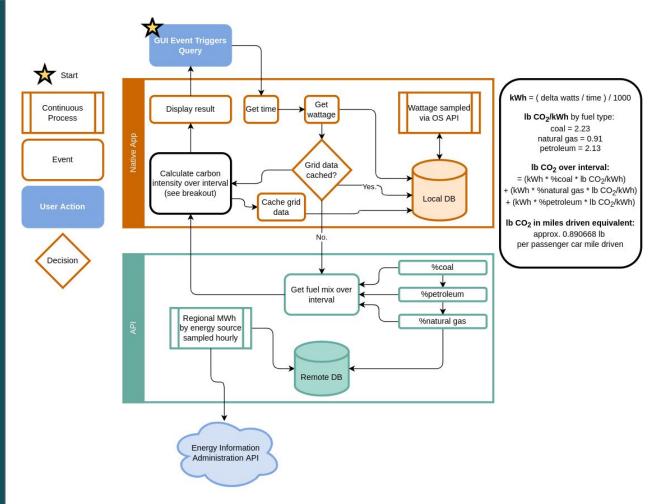
Gaming the System Spend 30% of total game time on titles with greater than 50% watts/frame efficiency score.

XP gains unlock new items via non-linear progression tree:

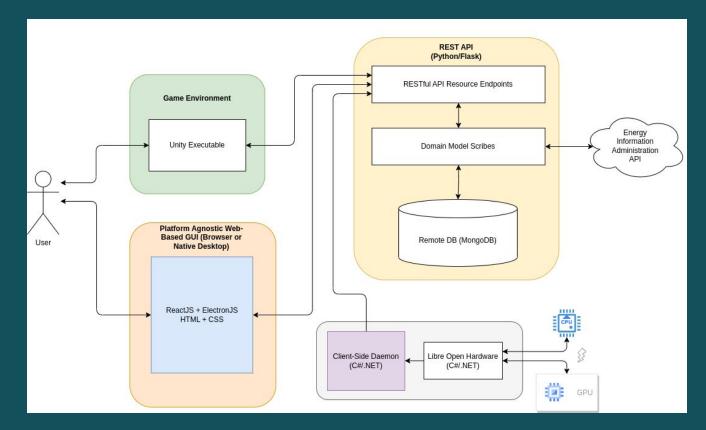


Potential for seasonal refresh, a la the battle pass model used by many live-service games.

Lifetime reputation/rank:


- Comparable to Xbox Gamerscore
- Measure of long-term engagement
- Tracked via leaderboards to foster healthy competition
- Users that achieve exclusive tiers of engagement rewarded with "ambassador" status
- Ambassador profiles (including personal ecosystem) given visibility on application homepage

Gamification: Proof of Concept



CS 411W | Team Crystal | 17 April 2023

Algorithm Flow: Carbon Intensity Calculation

Prototype MFCD

CS 411W | Team Crystal | 17 April 2023

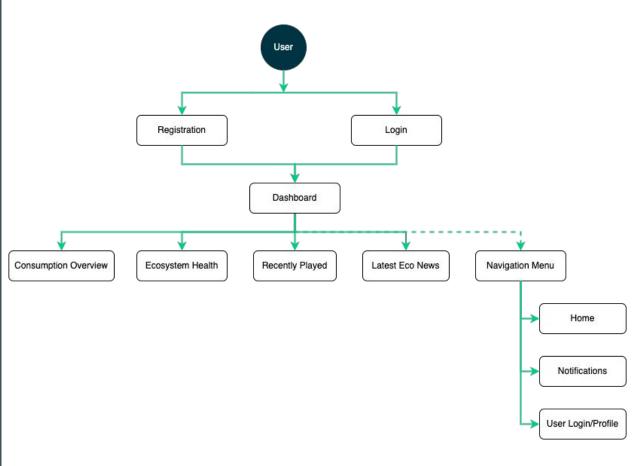
Development Tools

Software:

- Version Control: Git
- Repository: GitHub
- IDE: Visual Studio, VS Code
- Build/configuration management: .NET, pipenv
- Unit Testing:
 - xUnit (C#/.NET)
 - pytest for Python
- Documentation: XML, Pydoc, Markdown
 - Maintained/collected in GitHub Pages
- REST API Testing: Postman
- Containerization: Docker, Docker Compose
- Issue Tracking: GitHub

Hardware:

• Windows machines for testing power monitoring functionality

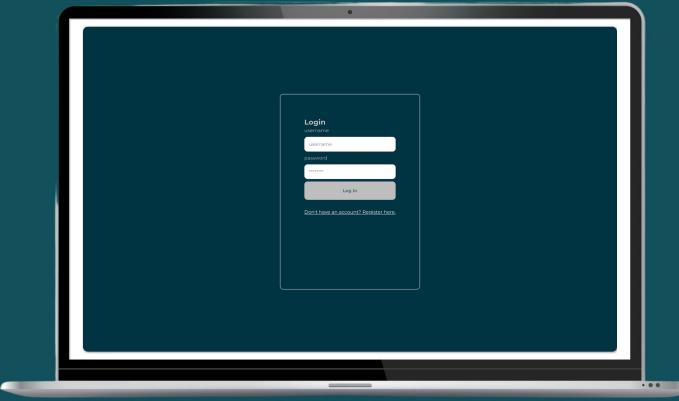

RWP vs. Prototype

Feature	RWP	Prototype	Prototype Actual
GUI layer	х	Х	Х
Hardware monitoring (GPU + CPU wattage)	Х	Х	Х
Anonymized telemetry collection	Х	partial	partial
Push Notifications	Х	Х	
Regional electric grid monitoring	Х	Х	Х
Remote storage of anonymized telemetry	Х		
Research API	Х	partial	partial
Electricity cost estimates	Х	Х	
Environmental/gaming news feeds	Х	Х	Х
User profile	Х	partial	partial
User login	Х		partial

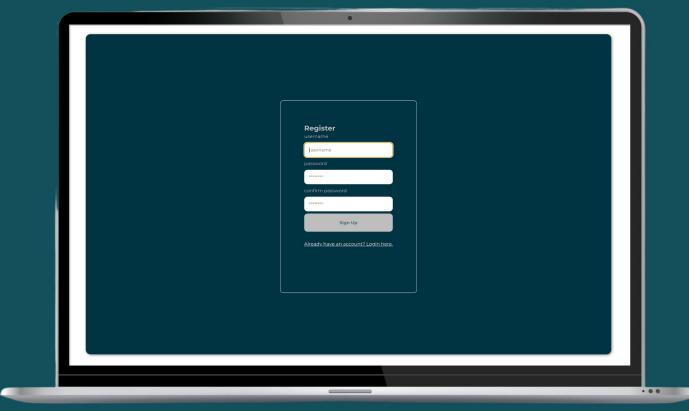
RWP vs. Prototype (cont.)

Feature	RWP	Prototype	Prototype Actual
Gamification	х	partial	partial
Seasonal progression/"battle pass" - style unlocks	Х	partial	
Fully interactive personal ecosystems	Х	partial	partial
Achievement/bounty system	Х	Х	
Virtual currency system	Х		
In-app "storefront" for item unlocks/personalization	Х	partial	
Social features	Х		
Add friends	Х		
Achievement leaderboard	Х		
Visit other users' ecosystems	Х		
Share achievements	Х		

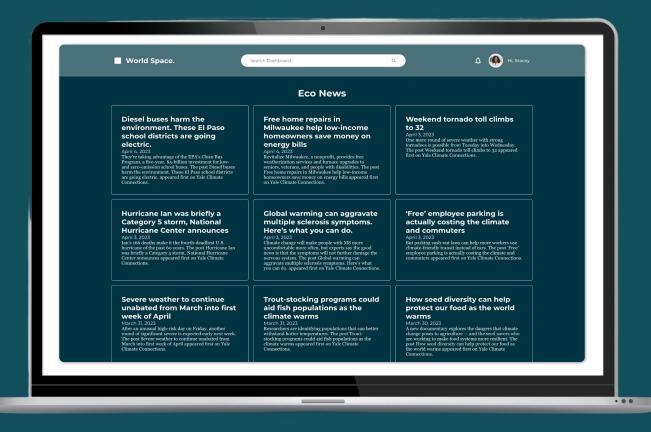
GUI Sitemap



CS 411W | Team Crystal | 17 April 2023


Dashboard

Login Page


Registration Page

Profile Page

Edit Profile User Name User Name Password Confirm Password Change Profile Picture Uplead Profile Picture Update	

News Page

Game World GUI

Conclusion

- Enthusiast personal computing an area ripe for emissions cuts
- Individual behaviors make an impact, but too many barriers to action
- Software can help engage and educate users, providing personalized, meaningful calls to action

Prototype Demonstration

References

Brookings. (2022, August 23). The social cost of carbon. Brookings. Retrieved September 12, 2022, from https://www.brookings.edu/bpea-articles/the-social-cost-of-carbon/

Brown, M. T. (n.d.). California fuel mix changes in response to September heat wave. U.S. Energy Information Administration (EIA). Retrieved September 27, 2022, from https://www.eia.gov/todayinenergy/detail.php?id=53939

ESG Integration: Sustainable Investment Themes. BlackRock. (n.d.). Retrieved September 12, 2022, from https://www.blackrock.com/ch/individual/en/themes/sustainable-investing/esg-integration

Guardian News and Media. (2022, September 4). Rich nations owe reparations to countries facing climate disaster, says Pakistan minister. The Guardian. Retrieved September 12, 2022, from https://www.theguardian.com/world/2022/sep/04/pakistan-floods-reparations-climate-disaster

IPCC, 2018: Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3-24. https://doi.org/10.1017/9781009157940.001.

Power Consumption of Typical Household Appliances. (2022). Daft Logic. Retrieved October 26, 2022, from https://www.daftlogic.com/information-appliance-power-consumption.htm.

Lawrence Berkeley National Laboratory. (n.d.). Cost & amp; carbon. Greening the Beast. Retrieved September 27, 2022, from https://sites.google.com/site/greeningthebeast/cost-carbon?authuser=0

Mills, E., Bourassa, N., Rainer, L., Mai, J., Shehabi, A., & amp; Mills, N. (2019). Toward greener gaming: Estimating national energy use and energy efficiency potential. The Computer Games Journal, 8(3-4), 157–178. https://doi.org/10.1007/s40869-019-00084-2

Mills, N., & Mills, E. (n.d.). Taming-the-energy-use-of-gaming-computers. Greening the Beast. Retrieved September 27, 2022, from https://sites.google.com/site/greeningthebeast/energy/taming-the-energy-use-of-gaming-computers?authuser=0

Mooney, C., & Stevens, H. (2022, July 18). Analysis | the U.S. plan to avoid extreme climate change is running out of Time. The Washington Post. Retrieved September 27, 2022, from https://www.washingtonpost.com/climate-environment/2022/07/18/climate-change-manchin-math/

NASA. (2022, September 26). Overview: Weather, Global Warming and climate change. NASA. Retrieved September 27, 2022, from https://climate.nasa.gov/global-warming-vs-climate-change/

Real-time operating grid - U.S. Energy Information Administration (EIA). Real-time Operating Grid - U.S. Energy Information Administration (EIA). (n.d.). Retrieved September 12, 2022, from https://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/US48/US48

Sims, D. (2022, July 13). AMD predicts gpus will reach 600-700W consumption by 2025. TechSpot. Retrieved December 6, 2022, from https://www.techspot.com/news/95274-amd-predicts-600-700W consumption by 2025. TechSpot. Retrieved December 6, 2022, from https://www.techspot.com/news/95274-amd-predicts-600-700W consumption by 2025. TechSpot. Retrieved December 6, 2022, from https://www.techspot.com/news/95274-amd-predicts-600-700w-gpus-2025.html

United Nations. (n.d.). What is climate change? United Nations. Retrieved September 28, 2022, from <u>https://www.un.org/en/climatechange/what-is-climate-change</u>

Wallace-Wells, D. (2022, September 7). Pakistan's vulnerability to disaster was through the roof. then came the floods. The New York Times. Retrieved September 12, 2022, from https://www.nytimes.com/2022/09/07/opinion/environment/pakistan-climate-change-floods.html

Prototype Data Management: IOT-Style Sample Collection Using Bucket Pattern in MongoDB

User samples stored in hourly 'buckets'

Mongo Express	Database: world_space -	Collection: ecogamer -	Document 6421ab4368b2d3	7ee192f43a
Editing Doc	ument: 642	21ab4368k	o2d37ee192	f43a

id: ObjectId('6421ab4368b2d37ee192f43a'), start time: ISODate('2023-02-14T04:00:00.000Z'), end time: ISODate('2023-02-14T04:59:59.000Z'), samples: [timestamp: ISODate('2023-02-14T04:00:00.000Z'), watts: { qpu watts: 244, cpu_watts: 79 14 timestamp: ISODate('2023-02-14T04:00:05.000Z'), watts: { gpu watts: 218, cpu watts: 92 timestamp: ISODate('2023-02-14T04:00:10.000Z'). watts: { dpu watts: 151. cpu watts: 104 timestamp: ISODate('2023-02-14T04:00:15.000Z'), watts: { qpu watts: 205, cpu watts: 70

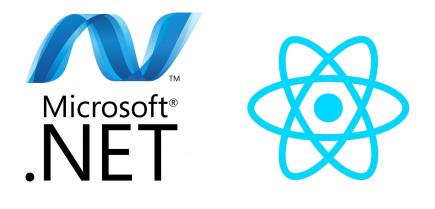
Grid data grouped to align with user samples

Mongo Express Database: world_space - > Collection: grid - > Document 642d75c249c9af5fa6cc43ec

Editing Document: 642d75c249c9af5fa6cc43ec

Back

Appendix


Competition

	Does not require external hardware (e.g. smartplugs)	Collect full PC wattage estimates	Collects whole PC wattage estimates that adjust in real time	Gives guidance on when clean energy is being utilized	Focus on PC rigs	Use gamification to entice users to continue good habits
HWMonitor	v				~	
HWinfo64	v				V	
Outervision.co m	V	V			V	
Ohmplug		~	~	~		
Us	~	~	~	~	~	~

Tech Stack: Native Desktop + Companion Mobile Applications

Languages/Frameworks:

- C# (backend)
- React.js
- Unity game engine

Database (Local):

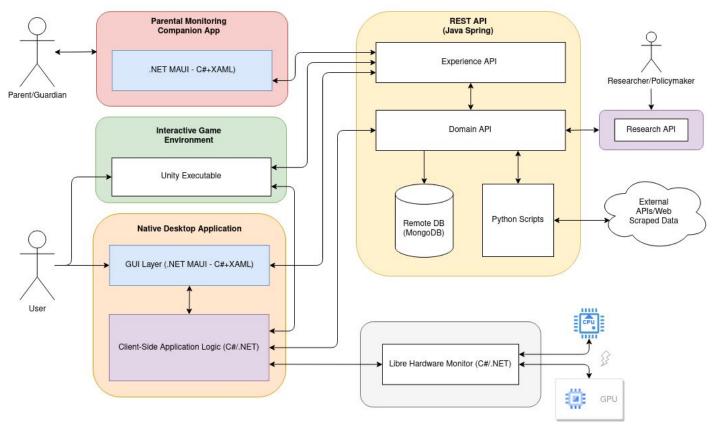
• MongoDB (NoSQL)

Tech Stack: REST API/Remote Database

Languages:

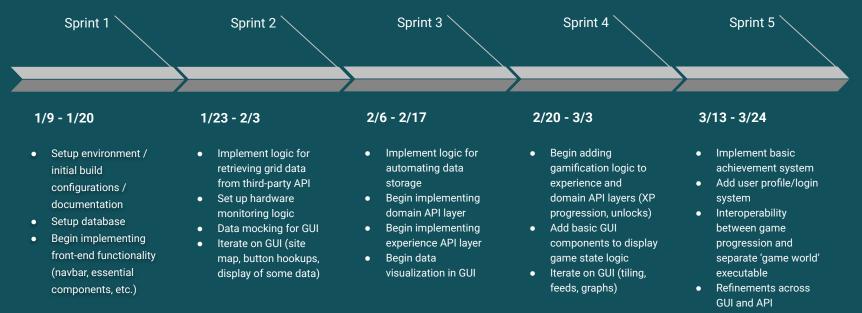
- Java
- Python (web scraping, data manipulation)

Framework:


• Spring

Database:

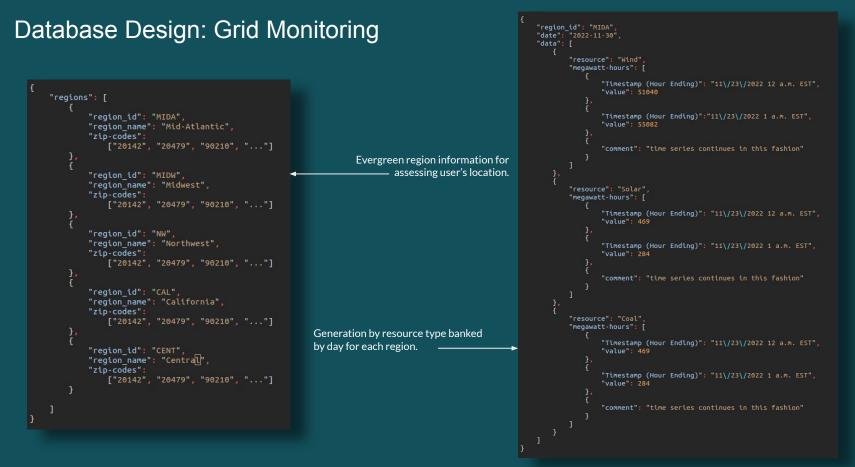
• MongoDB (NoSQL)


Major Functional Component Diagram

Indirect Competition

- CodeCarbon
 - For software developers
 - Open-source
- Green Algorithms
 - Shows estimated carbon footprint based on runtime of an algorithm and hardware info such as:
 - Type of core (CPU or GPU)
 - Number of cores
 - Model
 - Available memory
 - Platform (PC, cloud computing, or local server)
 - Geographic location

Prototype Agile Development Roadmap



RSS feeds

Development Model

- Divide work into manageable tasks
- Emphasize iteration on core functionality
- Quickly adapt to shifting project requirements

Database Design: User Data

```
"user id": "AGH801035",
                                                                                                            "zip": 90210.
                                                                                                            "hardware profile": {
                                                                                                                "cpu": "12th Gen Intel Core 19-12900K",
"user_id": "AGH801035",
                                                                                                                "gpu": "AMD Radeon RX 6900 XT",
"date": "2022-11-30",
                                                                                                                "motherboard": "ASUS TUF GAMING Z690-PLUS",
"samples": [
                                                                                                                "case fans": 5
                                                                                                            "game_state":
         "timestamp": "12:59",
                                                                                                                "ecosvstem": {
         "value": 167
                                                                                                                    "save_state": "037ae3153fa04b",
                                                                Wattage readings sampled at regular
                                                                                                                    "co2 ppm": 355.
                                                                                                                    "active_species": [
                                                                          intervals, grouped by date.
         "timestamp": "13:01",
                                                                                                                           "name": "lion".
         "value": 200
                                                                                                                           "health": 78.
                                                                                                                           "mood": "happy"
         "timestamp": "13:02",
         "value": 200
                                                                                                                            "name": "tiger".
                                                                                                                           "health": 34.
                                                                                                                           "mood": "worried"
         "timestamp": "13:03",
         "value": 200
    },
                                                                                                                "xp seasonal": 2533456.
                                                                                                                "season rank": 23.
                                                                                                                "active_bounties": ["87ff", "9cc0", "245d", "..."],
         "timestamp": "13:04",
                                                                                                                "achievement score": 2229535960,
         "value": 200
                                                                                                                "lifetime rank": 9.
                                                          User progression, customization, and
                                                                                                                "account status": {
                                                                                                                    "unlocks": ["lion", "tiger", "dandelion", "elephant", "..."],
         "timestamp": "13:05",
                                                          game state information.
                                                                                                                    "completed_achievements": ["af90", "9980", "45f3", "..."]
         "value": 200
                                                                                                            "social_profile": {
                                                                                                                "user_name": "theBigCheesyBread2022",
                                                                                                                "email": "theBigCheesyBread2022@not-real.com",
                                                                                                                "profile text": "Not a real person.",
1
                                                                                                                "user_icon": "unicorn-image.png"
```

Customer Risks

C1: Difficult to engage users on environmental focus

Mitigation:

- Appeal to users with game-like experiences and reward loops
- Make free to use, leverage curiosity gap INITIAL: HIGH -> MITIGATED: MEDIUM

C2: Difficult to keep users engaged – core functionality may not promote continued use Mitigation:

- Offer unlockable rewards for progression over time
- Structure rewards around repeatable achievement streaks
- Incorporate social features (leaderboards, achievement sharing, etc)

INITIAL: HIGH -> MITIGATED: MEDIUM

Customer Risk Matrix		Impact						
		Very Low	Low	Medium	High	Very High		
		1	2	3	4	5		
Probability	Very High	5			C2			
	High	4		C2		C1		
	Medium	3			C1			
	Low	2						
	Very Low	1						

Technical Risks

T1: Security threats to user data Mitigation:

- Follow industry best practices for encryption in transit and at rest
- Anonymize hardware configuration data stored remotely

INITIAL: HIGH -> MITIGATED: LOW

T2: Reliance on third-party APIs for data Mitigation:

- Use government sources
- Make methodology resilient to temporary service interruptions (e.g. bank historical data to feed projections)
 INITIAL: MEDIUM -> MITIGATED: LOW

T3: Accuracy of data/estimates

• Engage third-party subject matter experts (e.g. academics) to vet methodologies

INITIAL: HIGH -> MITIGATED: LOW

Technical Risk Matrix		Impact					
		Very Low	Low	Medium	High	Very High	
		1	2	3	4	5	
	Very High	5					
Probability	High	4				T1	
	Medium	3					ТЗ
	Low	2		T1		T2	
	Very Low	1		T2		Т3	

Legal Risks

L1: Challenges from hardware and software makers to application data/recommendations Mitigation:

- Base all recommendations on established methodologies for measuring carbon intensity
- Only use information from reliable, well-established third parties such as NASA, IPCC, EPA
- Publish methodologies to address any perceived bias

INITIAL: HIGH -> MITIGATED: MEDIUM

L2: Compromise of user data/privacy Mitigation:

- Limit collection/storage of potentially sensitive information from users
- Follow industry best practices for handling personal data
- Authenticate through third-party platforms for social features

INITIAL: HIGH -> MITIGATED: LOW

Legal Risk Matrix		Impact						
		Very Low	Low	Medium	High	Very High		
		1	2	3	4	5		
Probability	Very High	5				L1		
	High	4				L2		
	Medium	3		L1				
	Low	2		L2				
	Very Low	1						